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LETTER TO THE EDITOR

Vortex-motion-induced voltage noise in disordered type-II
superconducting films

Yoshihisa Enomoto†
Department of Physics, Nagoya Institute of Technology, Gokiso, Nagoya 466, Japan

Received 13 January 1997

Abstract. We explore the voltage noise properties arising from magnetic vortex motion
disturbed by both thermal fluctuation and random impurities. On the basis of a Langevin
dynamics simulation of the two-dimensional vortex dynamics driven by a transport current in
random media, we discuss the relationship between the voltage noise properties and the vortex
motion. In particular, it is demonstrated that 1/f noise power spectra appear in the plastic
flow region of the current–voltage characteristics, where an intermittent behaviour of the vortex
dynamics is observed with a large noise amplitude.

It has been recognized that noise measurement for the mixed state of type-II superconductors
is a useful tool in the study of the details of vortex dynamics [1]. Indeed, various fascinating
properties of the flux flow noise have been observed in recent experiments for driven
magnetic vortex systems in conventional and also high-Tc superconductors [2–7], such
as 1/f noise, an anomalous increase of the noise amplitude, and crossover phenomena
exhibited by the noise properties. Several concepts and models have been proposed to
explain the experimental data [8]. However, the understanding of the noise behaviour is
still incomplete, and there are still many unsolved problems.

In this letter, we discuss the direct link between the noise properties and the collective
vortex dynamics, on the basis of a Langevin dynamics simulation of a vortex model [9,
10]. As the first step in the simulations, we here consider the voltage noise due to the two-
dimensional vortex motion disturbed by both thermal noise and random impurities. The
vortex model is based on the vortex picture, and is described by the stochastic equation
of motion for vortex positions [9, 10]. This model has the advantage of allowing one to
visualize realistic vortex motion, and thus to obtain direct information on the dynamical
properties of vortex systems. In our previous work [11, 12], we have found nonlinear
threshold behaviour of the current–voltage (I–V ) characteristics for disordered systems:
V ∝ (I−Ith)a, with the exponenta and threshold currentIth [11]; and Kosterlitz–Thouless-
(KT-) type behaviour for two-dimensional clean systems, including the vortex pair creation
effect: V ∝ I b, with a sudden change of the exponentb at the KT transition temperature
[12]. In these simulations, we have only studied the macroscopic properties of the vortex
motion—that is, theI–V curves. In order to discuss the voltage noise properties, we here
focus on the microscopic (or time-dependent) information on the vortex dynamics.

We consider a thin slab of type-II superconductor, lying on a certain region in the
x–y plane, with cross sectional areaA. The thickness of the system,w, is taken to be
comparable to the magnetic penetration depth,λ. The restriction to the case wherew ' λ
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might correspond to the cases for thin-film samples and rigid vortices, in which the effects
of vortex line bending could be ignored. An external magnetic field is applied along the
positive z-direction, and a transport current flows along the positivey-direction. In the
present vortex model, the effects of vortex–vortex interaction, random impurities, thermal
noise, and the Lorentz force due to the transport current are included. The effects of random
impurities are modelled as a random potential [13]. However, the effects of the Magnus
force and the additional vortex pair creation have been neglected for simplicity.

The position of theith vortex at timet is described by the two-dimensional position
vectorri (t). Under these conditions, the free energy for anN -vortex system is given, with
conventional notation [14], by

F({rl}) =
∑
l

∑
i 6=l
V (rl(t)− ri (t))+

N∑
l=1

Vp(rl)− φ0w

c
j

N∑
l=1

x̂ · rl (1)

wherej denotes the transport current density, andx̂ is the unit vector along thex-axis with
the flux quantumφ0. The intervortex potential,V (r), is assumed to be given by

V (r) ≡ 2ε(T )K0

( |r|
λ(T )

)
(2)

where

ε(T ) ≡ (φ0/4πλ(T ))
2

with λ(T ) the magnetic penetration depth at temperatureT . The random potential,Vp(r),
represents the effects of quenched random impurities [13], assumed to be characterized by
Vp(r) = 0, and

Vp(r)Vp(r′) = 1

4
npapε(T )

2

(
1− T

Tc0

)−2

δ(r − r′) (3)

where the overline denotes the average over the impurity randomness, andnp is the impurity
strength andap the area of the unit cell of the underlying crystal lattice, withTc0 the
superconducting transition temperature at zero field.

Assuming the Langevin dynamics, the equation of motion for theith vortex position is
given by

γ−1 dri (t)

dt
= − δ

δri
F ({rl})+ fi (t) (4)

where

γ−1 ≡ σHc2(T )φ0/c
2

is the Bardeen–Stephan friction coefficient given in terms of the normal-state conductivityσ ,
the upper critical fieldHc2(T ) ≡ φ0/2πξ(T )2, and the coherence lengthξ(T ). The last term
in equation (4) describes the thermal noise, assumed to be characterized by〈〈fiα(t)〉〉 = 0
and

〈〈fiα(t)flβ(t ′)〉〉 = 2kBT γ δilδαβδ(t − t ′)/w (5)

wherefiα is the αth component offi , and 〈〈· · ·〉〉 denotes the average over the thermal
fluctuation.

Moreover, we assume the temperature dependence of above two length scales to be
given by

λ(T ) ≡ λ(0)(1− T/Tc0)−1/2 and ξ(T ) ≡ ξ(0)(1− T/Tc0)−1/2
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at all temperatures. Thus, in this case the Ginzburg–Landau parameter,κ, becomes
independent of temperature, and is given byκ ≡ λ(0)/ξ(0). We also use the relationship
obtained from microscopical theory:

4πλ(T )2σ/c2 = t0(1− T/Tc0)−1

with t0 ≡ πh̄/(96kBTc0) [14]. Note thatt0 ∼ 10−14 s for Tc0 = 10 K.
Strictly speaking, the present model is defective, at least in the following two features:

(i) it is not evident that the conditionw ' λ mentioned above is enough to guarantee straight
vortices, at least not for strongly anisotropic superconductors; (ii) theK0(x) intervortex
potential in equation (2) is only valid for very long vortices, i.e., not in the case of a thin
film [8]. These points are important in quantitatively comparing simulation results with
experimental data, and will be discussed in the future. Although there are these faults, we
here adopt the above simple model as a first step in studying vortex-motion-induced voltage
noise.

Finally, we comment on the numerical procedure used to solve the stochastic equation
(4). First of all, we rewrite equation (4) in terms of dimensionless variables. To do so, we
take the unit of length to beξ(0), the unit of time to bet0, the unit of magnetic induction
to beHc2(0), and the unit of current density to be

j0 ≡ cHc2(0)/(6
√

3πλ(0)).

Then, we transform the dimensionless equation into a spatial discretized version by using a
second-order central-difference representation for the spatial derivatives with dimensionless
spacing 1. The final procedure is that of integrating numerically the resulting equation of
motion by using a forward Euler difference scheme with dimensionless time step1τ . As
boundary conditions, we use periodic boundary conditions in thex–y plane. On the other
hand, the initial positions of the vortices are randomly distributed. For more details of
numerical methods, as well as a treatment of the thermal noise and the random potential,
see our previous work [10–12].

Figure 1. The mean vortex velocityvm as a function of the transport current densityj/j0,
denoted by•. Also shown is the noise amplitudeσ , denoted by◦.
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Now we carry out two-dimensional simulations for the vortex motion driven by transport
currents in random media. In actual simulations, we choose the parameter valuesκ = 2,
np = 0.05, and the energy scale ratiokBTc0/(ε(0)w) = 10−3. We also takew = λ(0),
A = 102ξ(0) × 102ξ(0), andap = ξ(0)2. Here we setN = 500 andT/Tc0 = 0.5. These
values are chosen for the computational reason that they allow us to obtain results efficiently,
within our computer availability limitations. The dimensionless time increment1τ is chosen
to be 0.01, which is small enough to ensure numerical stability of the algorithm.

In order to discuss the voltage noise properties, we measure the ensemble-averaged
time-dependent vortex velocityv(t) along thex-direction, defined in dimensionless units as

v(t) ≡
〈
x̂ · dri

dt

〉
t0

ξ(0)
(6)

where〈· · ·〉 denotes the ensemble average over both vortices and ten independent simulation
runs. Moreover, to examine the macroscopic motion of the vortex system, we also calculate
the mean vortex velocityvm as

vm ≡ 〈v(t)〉t (7)

where 〈· · ·〉t denotes the time average ofv(t) over long times up to 106t0. In this time
averaging, we discard the initial data up to 102t0 to avoid the initial transient behaviour.
The noise amplitude is described in terms of the standard deviationσ of v(t), defined by

σ ≡
√
〈(v(t)− 〈v(t)〉t )2〉t .

Figure 2. Trajectories of the vortices fromt/t0 = 1000 to 1500 forj/j0 = 0.1 (a), 0.175 (b),
and 0.4 (c). The dots denote the positions of the vortices att/t0 = 1500.

In figure 1 we show the mean vortex velocityvm as a function of the transport current
densityj . Since the mean velocityvm obtained is proportional to the electric field along
they-direction induced by the vortex motion, the resultingj versusvm relation corresponds
to the steady-stateI–V characteristic. In this figure we also plot the noise amplitudeσ

as a function ofj . As was discussed in previous work [11], the curve is characterized
by the nonlinear functional formvm ∝ (j − jth)a near the threshold current densityjth
(jth ' 0.122j0 anda ' 2.1 in this case). Moreover, the noise amplitudeσ is found to have
a peak slightly above the threshold currentjth. Next, we examine the crossover phenomena
of the vortex flow pattern according to the transport current. In figure 2 we show the vortex
trajectories for three typical values of the transport current:j/j0 = 0.1 (a), 0.175 (b), and
0.4 (c). As has been discussed in references [9, 11], we can see the different types of
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Figure 3. The ensemble-averaged vortex velocityv(t) as a function of timet/t0 for j/j0 =
0.1 (a), 0.175 (b), and 0.4 (c).

Figure 4. The power spectrumS(f ) of the ensemble-averaged vortex velocityv(t) as a function
of the frequencyf/f0 for j/j0 = 0.1 (a), 0.175 (b), and 0.4 (c). In (b), a straight line is also
plotted with its slope indicated.

vortex motion that occur according to the value ofj . In particular, case (b) is called the
plastic flow state. In the present simulations, we have observed the plastic flow pattern
for 0.135 6 j/j0 6 0.225, where the noise amplitude is relatively large as is shown in
figure 1. The ensemble-averaged vortex velocityv(t) is shown in figure 3 as a function of
time t for j/j0 = 0.1 (a), 0.175 (b), and 0.4 (c). It is found that for case (b) (in the plastic
flow region) intermittent behaviour of the collective vortex motion appears, and this leads
to the nonlinear relationship betweenj andvm with the large noise amplitude. Finally, to
facilitate discussion of the voltage noise properties, we examine the power spectrum,S(f ),
of the ensemble-averaged time-dependent vortex velocityv(t) as a function of a frequency
f , defined by

S(f ) ≡
∣∣∣∣∫ v(t)e−i2πf t dt

∣∣∣∣2 . (8)

Since v(t) is proportional to the time-dependent induced voltage, the resultingS(f ) is
proportional to the voltage noise power spectrum. The power spectraS(f ) are shown in
figure 4 forj/j0 = 0.1 (a), 0.175 (b), and 0.4 (c). Here, the unit of the frequency is taken
as f0 = 1/(212× 200t0), whose typical value is estimated to be 107 Hz for Tc0 = 10 K.
In these figures, we can see the 1/f noise power spectrum (estimated asS(f ) ∼ f −1.1)
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for j/j0 = 0.175, while the white-noise properties are observed for the small(j/j0 = 0.1)
and the large current(j/j0 = 0.4). In the present simulations,(1/f )-type behaviours of
S(f ) (estimated asS(f ) ∼ f −ν with ν = 0.9–1.2) have been obtained in the plastic
flow region between the white-noise regions for both small and large transport current
densities. Similar crossover behaviour of the voltage noise power spectra as a function
of the transport current has been obtained experimentally for low-Tc superconducting thin
films [2]. However, in this work we cannot find the Lorentzian-type behaviour of the noise
power spectra likeS(f ) ' S0/(f

2+ f 2
1 ) with positive constantsS0 andf1 which has been

observed experimentally for the intermediate-current region between the 1/f noise region
and the white-noise region for the large current [2]. In order to examine the reason for
this discrepancy, further simulations are now under way that involve carefully changing the
values of the temperature, the vortex number, and the pinning strength.

In conclusion, after performing two-dimensional Langevin dynamics simulations of the
vortex model driven by the transport current in random media, we have discussed the
vortex-motion-induced voltage noise properties as functions of the transport current. The
results have demonstrated that the voltage noise properties are in close correlation with the
dynamical behaviour of vortex systems. In particular, the 1/f noise has been found to
appear in the plastic flow region in which intermittent vortex motion occurs with a large
noise amplitude.

Here we have restricted the present simulations to the study of the voltage noise arising
from the two-dimensional vortex motion disturbed by both thermal noise and random
impurities. Recent experiments have revealed that the flux flow noise is generated from
many sources, and is affected by various features [3–7], such as the three dimensionality
of the vortex lines (causing, e.g., bending, entanglement, and cutting), grain boundary
effects, various types of pinning centre, the KT-type vortex pair creation, and the dynamical
transitions of the vortex line lattices. Although the results obtained here cannot be directly
applied to these cases, the present study might give a useful guide for use when discussing
the noise properties in such complicated situations. Moreover, the 1/f noise can be widely
seen for a number of physical systems [15], and is now discussed in terms of the concept
of self-organized criticality [16, 17]. In order to study the generic properties of the noise, it
would be interesting to compare the present model simulations with those for other physical
systems.

The author is grateful to Professor S Maekawa for a number of valuable discussions.
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